Sains Malaysiana 53(12)(2024): 3229-3240

http://doi.org/10.17576/jsm-2024-5312-08

 

Kesan Nanozarah Hibrid terhadap Aliran Bendalir Eyring-Powell pada Permukaan Mengecut

(Hybrid Nanoparticles Effects on the Flow of a Eyring-Powell Fluid Past a Shrinking Sheet)

 

ISKANDAR WAINI1, FARAH NADZIRAH JAMRUS2, ANUAR ISHAK3,* & IOAN POP4

 

1Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
2Kolej Pengajian Pengkomputeran, Informatik dan Matematik, Universiti Teknologi MARA, Cawangan Melaka Kampus Jasin, 77300 Merlimau, Melaka, Malaysia
3Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
4Department of Mathematics, Babes-Bolyai University, 400084 Cluj-Napoca, Romania

 

Received: 30 April 2024/Accepted: 6 September 2024

 

Abstrak

Kesan nanozarah hibrid terhadap aliran bendalir Eyring-Powell pada permukaan mengecut dengan halaju hukum kuasa dikaji. Penjelmaan keserupaan yang sesuai digunakan untuk mengubah persamaan menakluk kepada persamaan keserupaan. Penyelesai masalah nilai sempadan bvp4c dalam perisian MATLAB digunakan untuk mendapatkan penyelesaian berangka. Hasil kajian mendapati bahawa nanozarah hibrid meningkatkan kedua-dua kecerunan halaju dan suhu, yang seterusnya meningkatkan geseran pada permukaan dan kadar pemindahan haba masing-masing pada 5.01% dan 0.59% berbanding bendalir asas. Namun, kuantiti fizikal tersebut menurun dan domain penyelesaiannya terjejas dengan kehadiran parameter bendalir Eyring-Powell. Daripada analisis kestabilan, hanya satu daripada dua penyelesaian tersebut stabil dalam jangka masa panjang.

 

Kata kunci: Analisis kestabilan; Eyring-Powell; nanobendalir hibrid; penyelesaian dual; permukaan mengecut

 

Abstract

The effect of hybrid nanoparticles on Eyring-Powell fluid flow over a shrinking sheet with power-law velocity is studied. The suitable similarity transformations are used to transform the governing equations into the similarity equations. The bvp4c solver in MATLAB software is employed to generate the numerical results. The outcomes show that the hybrid nanoparticles raise both the velocity and temperature gradients, which consequently increases the friction at the surface and the rate of heat transfer by 5.01% and 0.59%, respectively, compared with the base fluid. However, these physical quantities are reduced, and the domain of the solutions is affected in the presence of the Eyring-Powell fluid parameters. From the stability analysis, only one of the solutions is stable in the long run.

 

Keywords: Dual solutions; Eyring-Powell; hybrid nanofluid; shrinking sheet; stability analysis

 

REFERENCES

Akbar, N.S., Ebaid, A. & Khan, Z.H. 2015. Numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching sheet. Journal of Magnetism and Magnetic Materials 382: 355-358.

Aljabali, A., Kasim, A.R.M., Arifin, N.S., Isa, S.M. & Ariffin, N.A.N. 2021. Analysis of convective transport of temperature-dependent viscosity for non-Newtonian Erying Powell fluid: A numerical approach. Computers, Materials and Continua 66(1): 675-689.

Ara, A., Khan, N.A., Khan, H. & Sultan, F. 2014. Radiation effect on boundary layer flow of an Eyring-Powell fluid over an exponentially shrinking sheet. Ain Shams Engineering Journal 5(4): 1337-1342.

Bhatti, M.M., Abbas, T., Rashidi, M.M., Ali, M.E.S. & Yang, Z. 2016. Entropy generation on MHD Eyring–Powell nanofluid through a permeable stretching surface. Entropy 18(6): 224.

Choi, S.U.S. & Eastman, J.A. 1995. Enhancing thermal conductivity of fluids with nanoparticles. Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, FED 231/MD 66: 99-105.

Cortell, R. 2012. Combined effect of viscous dissipation and thermal radiation on fluid flows over a non-linearly stretched permeable wall. Meccanica 47(3): 769-781.

Cortell, R. 2007. Viscous flow and heat transfer over a nonlinearly stretching sheet. Applied Mathematics and Computation 184(2): 864-873.

Crane, L.J. 1970. Flow past a stretching plate. Zeitschrift Für Angewandte Mathematik Und Physik ZAMP 21(4): 645-647.

Fatunmbi, E.O. & Adeosun, A.T. 2020. Nonlinear radiative Eyring-Powell nanofluid flow along a vertical Riga plate with exponential varying viscosity and chemical reaction. International Communications in Heat and Mass Transfer 119: 104913.

Ghadikolaei, S.S., Hosseinzadeh, K. & Ganji, D.D. 2017. Analysis of unsteady MHD Eyring-Powell squeezing flow in stretching channel with considering thermal radiation and Joule heating effect using AGM. Case Studies in Thermal Engineering 10: 579-594.

Goldstein, S. 1965. On backward boundary layers and flow in converging passages. Journal of Fluid Mechanics 21(1): 33-45.

Haldar, S., Mukhopadhyay, S. & Layek, G.C. 2021. Effects of thermal radiation on Eyring–Powell fluid flow and heat transfer over a power-law stretching permeable surface. International Journal for Computational Methods in Engineering Science and Mechanics 22(5): 366-375.

Harris, S.D., Ingham, D.B. & Pop, I. 2009. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transport in Porous Media 77(2): 267-285.

Hayat, T., Hussain, Z., Farooq, M. & Alsaedi, A. 2018. Magnetohydrodynamic flow of Powell-Eyring fluid by a stretching cylinder with Newtonian heating. Thermal Science 22(1): 371-382.

Ho, C.J., Liu, W.K., Chang, Y.S. & Lin, C.C. 2010. Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study. International Journal of Thermal Sciences 49(8): 1345-1353.

Jalil, M., Asghar, S. & Imran, S.M. 2013. Self-similar solutions for the flow and heat transfer of Powell-Eyring fluid over a moving surface in a parallel free stream. International Journal of Heat and Mass Transfer 65: 73-79.

Khashi’ie, N.S., Waini, I., Zainal, N.A. & Hamzah, K. 2020. Hybrid nanofluid flow past a shrinking cylinder with prescribed surface heat flux. Symmetry 12(9): 1493.

Li, P., Duraihem, F.Z., Awan, A.U., Al-Zubaidi, A., Abbas, N. & Ahmad, D. 2022. Heat transfer of hybrid nanomaterials base Maxwell micropolar fluid flow over an exponentially stretching surface. Nanomaterials 12(7): 1207.

Merkin, J.H. 1986. On dual solutions occurring in mixed convection in a porous medium. Journal of Engineering Mathematics 20(2): 171-179.

Miklavčič, M. & Wang, C.Y. 2006. Viscous flow due to a shrinking sheet. Quarterly of Applied Mathematics 64(2): 283-290.

Pak, B.C. & Cho, Y.I. 1998. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide. Experimental Heat Transfer 11(2): 151-170.

Powell, R.E. & Eyring, H. 1944. Mechanisms for the relaxation theory of viscosity. Nature 154: 427-428.

Riaz, A., Ellahi, R., Bhatti, M.M. & Marin, M. 2019. Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel. Heat Transfer Research 50(16): 1539-1560.

Riaz, A., Ellahi, R. & Sait, S.M. 2021. Role of hybrid nanoparticles in thermal performance of peristaltic flow of Eyring–Powell fluid model. Journal of Thermal Analysis and Calorimetry 143: 1021-1035.

Rohni, A.M., Ahmad, S. & Pop, I. 2012. Note on Cortell’s non-linearly stretching permeable sheet. International Journal of Heat and Mass Transfer 55(21-22): 5846-5852.

Roşca, A.V. & Pop, I. 2014. Flow and heat transfer of Powell-Eyring fluid over a shrinking surface in a parallel free stream. International Journal of Heat and Mass Transfer 71: 321-327.

Rosseland, S. 1931. Astrophysik Und Atom-Theoretische Grundlagen. Berlin: Springer-Verlag.

Shampine, L.F., Gladwell, I. & Thompson, S. 2003. Solving ODEs with MATLAB. Cambridge: Cambridge University Press.

Suresh, S., Venkitaraj, K.P., Selvakumar, P. & Chandrasekar, M. 2011. Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties, Colloids and Surfaces A: Physicochemical and Engineering Aspects 388(1-3): 41-48.

Takabi, B. & Salehi, S. 2014. Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Advances in Mechanical Engineering 6: 147059.

Tlili, I., Nabwey, H.A., Ashwinkumar, G.P. & Sandeep, N. 2020. 3-D magnetohydrodynamic AA7072-AA7075/methanol hybrid nanofluid flow above an uneven thickness surface with slip effect. Scientific Reports 10(1): 4265.

Vajravelu, K. 2001. Viscous flow over a nonlinearly stretching sheet. Applied Mathematics and Computation 124(3): 281-288.

Waini, I., Ishak, A. & Pop, I. 2021a. Hybrid nanofluid flow on a shrinking cylinder with prescribed surface heat flux. International Journal of Numerical Methods for Heat & Fluid Flow 31(6): 1987-2004.

Waini, I., Ishak, A. & Pop, I. 2021b. Hybrid nanofluid flow over a permeable non-isothermal shrinking surface. Mathematics 9: 538.

Waini, I., Ishak, A. & Pop, I. 2021c. Melting heat transfer of a hybrid nanofluid flow towards a stagnation point region with second-order slip. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 235(2): 405-415.

Wakif, A., Chamkha, A., Thumma, T., Animasaun, I.L. & Sehaqui, R. 2021. Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s nanofluid model. Journal of Thermal Analysis and Calorimetry 143(2): 1201-1220.

Wang, C.Y. 1990. Liquid film on an unsteady stretching surface. Quarterly of Applied Mathematics 48(4): 601-610.

Waqas, H., Farooq, U., Naseem, R., Hussain, S. & Alghamdi, M. 2021. Impact of MHD radiative flow of hybrid nanofluid over a rotating disk. Case Studies in Thermal Engineering 26(4): 101015.

Weidman, P.D., Kubitschek, D.G. & Davis, A.M.J. 2006. The effect of transpiration on self-similar boundary layer flow over moving surfaces. International Journal of Engineering Science 44(11-12): 730-737.

Yoon, H.K. & Ghajar, A.J. 1987. A note on the Powell-Eyring fluid model. International Communications in Heat and Mass Transfer 14(4): 381-392.

 

*Corresponding author; email: anuar_mi@ukm.edu.my

 

 

 

 

 

 

 

 

previous next