Sains Malaysiana 53(12)(2024): 3229-3240
http://doi.org/10.17576/jsm-2024-5312-08
Kesan Nanozarah Hibrid terhadap Aliran Bendalir Eyring-Powell
pada Permukaan Mengecut
(Hybrid Nanoparticles Effects on the Flow
of a Eyring-Powell Fluid Past a Shrinking Sheet)
ISKANDAR
WAINI1, FARAH NADZIRAH JAMRUS2, ANUAR ISHAK3,* & IOAN POP4
1Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
2Kolej Pengajian Pengkomputeran, Informatik dan Matematik, Universiti Teknologi MARA, Cawangan Melaka Kampus Jasin, 77300 Merlimau, Melaka,
Malaysia
3Department of Mathematical Sciences, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
4Department of Mathematics, Babes-Bolyai University, 400084 Cluj-Napoca, Romania
Received: 30
April 2024/Accepted: 6 September 2024
Abstrak
Kesan nanozarah hibrid terhadap aliran bendalir Eyring-Powell pada permukaan mengecut dengan halaju hukum kuasa dikaji. Penjelmaan keserupaan yang sesuai digunakan untuk mengubah persamaan menakluk kepada persamaan keserupaan. Penyelesai masalah nilai sempadan bvp4c dalam perisian MATLAB digunakan untuk mendapatkan penyelesaian berangka. Hasil kajian mendapati bahawa nanozarah hibrid meningkatkan kedua-dua kecerunan halaju dan suhu, yang seterusnya meningkatkan geseran pada permukaan dan kadar pemindahan haba masing-masing pada 5.01% dan 0.59% berbanding bendalir asas. Namun, kuantiti fizikal tersebut menurun dan domain penyelesaiannya terjejas dengan kehadiran parameter bendalir Eyring-Powell. Daripada analisis kestabilan, hanya satu daripada dua penyelesaian tersebut stabil dalam jangka masa panjang.
Kata kunci: Analisis kestabilan; Eyring-Powell; nanobendalir hibrid; penyelesaian dual; permukaan mengecut
Abstract
The
effect of hybrid nanoparticles on Eyring-Powell fluid flow over a shrinking
sheet with power-law velocity is studied. The suitable similarity
transformations are used to transform the governing equations into the
similarity equations. The bvp4c solver in MATLAB software is employed to
generate the numerical results. The outcomes show that the hybrid nanoparticles
raise both the velocity and temperature gradients, which consequently increases
the friction at the surface and the rate of heat transfer by 5.01% and 0.59%,
respectively, compared with the base fluid. However, these physical quantities
are reduced, and the domain of the solutions is affected in the presence of the
Eyring-Powell fluid parameters. From the stability analysis, only one of the solutions
is stable in the long run.
Keywords: Dual
solutions; Eyring-Powell; hybrid nanofluid; shrinking sheet; stability analysis
REFERENCES
Akbar, N.S., Ebaid,
A. & Khan, Z.H. 2015. Numerical analysis of magnetic field effects on
Eyring-Powell fluid flow towards a stretching sheet. Journal of Magnetism
and Magnetic Materials 382: 355-358.
Aljabali, A., Kasim, A.R.M., Arifin, N.S., Isa,
S.M. & Ariffin, N.A.N. 2021. Analysis of
convective transport of temperature-dependent viscosity for non-Newtonian Erying Powell fluid: A numerical approach. Computers,
Materials and Continua 66(1): 675-689.
Ara, A., Khan, N.A., Khan, H. & Sultan,
F. 2014. Radiation effect on boundary layer flow of an Eyring-Powell fluid over
an exponentially shrinking sheet. Ain Shams Engineering Journal 5(4): 1337-1342.
Bhatti, M.M., Abbas, T., Rashidi, M.M.,
Ali, M.E.S. & Yang, Z. 2016. Entropy generation on MHD Eyring–Powell
nanofluid through a permeable stretching surface. Entropy 18(6): 224.
Choi, S.U.S. & Eastman, J.A. 1995. Enhancing
thermal conductivity of fluids with nanoparticles. Proceedings of the 1995
ASME International Mechanical Engineering Congress and Exposition, FED 231/MD 66: 99-105.
Cortell, R. 2012. Combined effect of viscous
dissipation and thermal radiation on fluid flows over a non-linearly stretched
permeable wall. Meccanica 47(3): 769-781.
Cortell, R. 2007. Viscous flow and heat transfer
over a nonlinearly stretching sheet. Applied Mathematics and Computation 184(2): 864-873.
Crane, L.J. 1970. Flow past a stretching
plate. Zeitschrift Für Angewandte Mathematik Und Physik ZAMP 21(4): 645-647.
Fatunmbi, E.O. & Adeosun, A.T. 2020. Nonlinear
radiative Eyring-Powell nanofluid flow along a vertical Riga plate with
exponential varying viscosity and chemical reaction. International
Communications in Heat and Mass Transfer 119: 104913.
Ghadikolaei, S.S., Hosseinzadeh,
K. & Ganji, D.D. 2017. Analysis of unsteady MHD
Eyring-Powell squeezing flow in stretching channel with considering thermal
radiation and Joule heating effect using AGM. Case Studies in Thermal
Engineering 10: 579-594.
Goldstein, S. 1965. On backward boundary
layers and flow in converging passages. Journal of Fluid Mechanics 21(1): 33-45.
Haldar, S., Mukhopadhyay, S. & Layek, G.C. 2021. Effects of thermal radiation on
Eyring–Powell fluid flow and heat transfer over a power-law stretching
permeable surface. International Journal for Computational Methods in
Engineering Science and Mechanics 22(5): 366-375.
Harris, S.D., Ingham,
D.B. & Pop, I. 2009. Mixed convection boundary-layer flow near the
stagnation point on a vertical surface in a porous medium: Brinkman model with
slip. Transport in Porous Media 77(2): 267-285.
Hayat, T., Hussain, Z., Farooq, M. & Alsaedi, A. 2018. Magnetohydrodynamic flow of Powell-Eyring
fluid by a stretching cylinder with Newtonian heating. Thermal Science 22(1): 371-382.
Ho, C.J., Liu, W.K., Chang, Y.S. & Lin,
C.C. 2010. Natural convection heat transfer of alumina-water nanofluid in
vertical square enclosures: An experimental study. International Journal of
Thermal Sciences 49(8): 1345-1353.
Jalil, M., Asghar, S. & Imran, S.M.
2013. Self-similar solutions for the flow and heat transfer of Powell-Eyring
fluid over a moving surface in a parallel free stream. International Journal
of Heat and Mass Transfer 65: 73-79.
Khashi’ie, N.S., Waini,
I., Zainal, N.A. & Hamzah, K. 2020. Hybrid nanofluid flow past a shrinking
cylinder with prescribed surface heat flux. Symmetry 12(9): 1493.
Li, P., Duraihem,
F.Z., Awan, A.U., Al-Zubaidi, A., Abbas, N. &
Ahmad, D. 2022. Heat transfer of hybrid nanomaterials base Maxwell micropolar
fluid flow over an exponentially stretching surface. Nanomaterials 12(7): 1207.
Merkin, J.H. 1986. On dual solutions occurring in
mixed convection in a porous medium. Journal of Engineering Mathematics 20(2): 171-179.
Miklavčič, M. & Wang, C.Y. 2006. Viscous flow
due to a shrinking sheet. Quarterly of Applied Mathematics 64(2): 283-290.
Pak, B.C. & Cho, Y.I. 1998.
Hydrodynamic and heat transfer study of dispersed fluids with submicron
metallic oxide. Experimental Heat Transfer 11(2): 151-170.
Powell, R.E. & Eyring, H. 1944.
Mechanisms for the relaxation theory of viscosity. Nature 154: 427-428.
Riaz, A., Ellahi,
R., Bhatti, M.M. & Marin, M. 2019. Study of heat and mass transfer in the
Eyring-Powell model of fluid propagating peristaltically through a rectangular
compliant channel. Heat Transfer Research 50(16): 1539-1560.
Riaz, A., Ellahi,
R. & Sait, S.M. 2021. Role of hybrid
nanoparticles in thermal performance of peristaltic flow of Eyring–Powell fluid
model. Journal of Thermal Analysis and Calorimetry 143: 1021-1035.
Rohni, A.M., Ahmad, S. & Pop, I. 2012. Note
on Cortell’s non-linearly stretching permeable sheet. International Journal of Heat and Mass Transfer 55(21-22): 5846-5852.
Roşca, A.V. & Pop, I. 2014. Flow and heat
transfer of Powell-Eyring fluid over a shrinking surface in a parallel free
stream. International Journal of Heat and Mass Transfer 71: 321-327.
Rosseland, S. 1931. Astrophysik Und Atom-Theoretische Grundlagen.
Berlin: Springer-Verlag.
Shampine, L.F., Gladwell, I. & Thompson, S.
2003. Solving ODEs with MATLAB. Cambridge: Cambridge University Press.
Suresh, S., Venkitaraj,
K.P., Selvakumar, P. & Chandrasekar, M. 2011.
Synthesis of Al2O3-Cu/water hybrid nanofluids using two
step method and its thermo physical properties, Colloids and Surfaces A:
Physicochemical and Engineering Aspects 388(1-3): 41-48.
Takabi, B. & Salehi, S. 2014. Augmentation of
the heat transfer performance of a sinusoidal corrugated enclosure by employing
hybrid nanofluid. Advances in Mechanical Engineering 6: 147059.
Tlili, I., Nabwey,
H.A., Ashwinkumar, G.P. & Sandeep, N. 2020. 3-D
magnetohydrodynamic AA7072-AA7075/methanol hybrid nanofluid flow above an
uneven thickness surface with slip effect. Scientific Reports 10(1):
4265.
Vajravelu, K. 2001. Viscous flow over a nonlinearly
stretching sheet. Applied Mathematics and Computation 124(3): 281-288.
Waini, I., Ishak, A. & Pop, I. 2021a. Hybrid
nanofluid flow on a shrinking cylinder with prescribed surface heat flux. International
Journal of Numerical Methods for Heat & Fluid Flow 31(6): 1987-2004.
Waini, I., Ishak, A. & Pop, I. 2021b. Hybrid
nanofluid flow over a permeable non-isothermal shrinking surface. Mathematics 9: 538.
Waini, I., Ishak, A. & Pop, I. 2021c.
Melting heat transfer of a hybrid nanofluid flow towards a stagnation point
region with second-order slip. Proceedings of the Institution of Mechanical
Engineers, Part E: Journal of Process Mechanical Engineering 235(2): 405-415.
Wakif, A., Chamkha,
A., Thumma, T., Animasaun,
I.L. & Sehaqui, R. 2021. Thermal radiation and
surface roughness effects on the thermo-magneto-hydrodynamic stability of
alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s
nanofluid model. Journal of Thermal Analysis and Calorimetry 143(2):
1201-1220.
Wang, C.Y. 1990. Liquid film on an unsteady
stretching surface. Quarterly of Applied Mathematics 48(4): 601-610.
Waqas, H., Farooq, U., Naseem, R., Hussain,
S. & Alghamdi, M. 2021. Impact of MHD radiative flow of hybrid nanofluid
over a rotating disk. Case Studies in Thermal Engineering 26(4): 101015.
Weidman, P.D., Kubitschek,
D.G. & Davis, A.M.J. 2006. The effect of transpiration on self-similar
boundary layer flow over moving surfaces. International Journal of
Engineering Science 44(11-12): 730-737.
Yoon, H.K. & Ghajar,
A.J. 1987. A note on the Powell-Eyring fluid model. International Communications
in Heat and Mass Transfer 14(4): 381-392.
*Corresponding author; email:
anuar_mi@ukm.edu.my